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ABSTRACT
Signal-derived measures can provide effective ways towards quanti-
fying human behavior. Verbal Response Latencies (VRLs) of chil-
dren with Autism Spectrum Disorders (ASD) during conversational
interactions are able to convey valuable information about their cog-
nitive and social skills. Motivated by the inherent gap between the
external behavior and inner affective state of children with ASD, we
study their VRLs in relation to their explicit but also implicit behav-
ioral cues. Explicit cues include the children’s language use, while
implicit cues are based on physiological signals. Using these cues,
we perform classification and regression tasks to predict the dura-
tion type (short/long) and value of VRLs of children with ASD while
they interacted with an Embodied Conversational Agent (ECA) and
their parents. Since parents are active participants in these triadic
interactions, we also take into account their linguistic and physio-
logical behaviors. Our results suggest an association between VRLs
and these externalized and internalized signal information streams,
providing complementary views of the same problem.

Index Terms— Verbal response latency, Electrodermal Activity,
Language modeling, Autism Spectrum Disorders, Generalized linear
regression

1. INTRODUCTION
Modeling human behavior with signal-derived cues affords us new
quantifiable measures and insights into better understanding typical
and atypical behavioral patterns [1]. Turn-taking dynamics during
interactions provide a window into the participants’ mental state and
underlying social and cognitive processes. Especially for children,
temporal conversational patterns can reflect their developmental tra-
jectory, social abilities and mental skills [2]. One of the core symp-
toms of Autism Spectrum Disorders (ASD) are impairments of so-
cial interaction, in that children with ASD depict limited reciprocal
conversations and reduced spontaneous communicative speech [3].
Modeling their interactional dynamics might offer us new insights
into the nature of their social and cognitive behaviors.

One of the main indicators of children’s quality of rapport is
their Verbal Response Latency (VRL), defined as the time duration
between the end of someone’s turn and the beginning of the child’s
corresponding turn. Long VRLs provide valuable information about
the children’s perceived cognitive and affective state, reflected on
their overt observable as well as covert inner behavioral cues. Moti-
vated by these, we examined the VRLs of children with ASD during
their interactions with an Embodied Conversational Agent (ECA),
named “Rachel”, and one of their parents. Children had to complete
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several games and story-telling tasks, designed to elicit their cogni-
tive and emotional reasoning abilities [4] and in parallel get engaged
into an interactional triad with the ECA and their parent.

Children’s response latencies to Rachel’s stimuli can reflect their
cognitive state, since long VRLs might occur after mentally chal-
lenging questions, or before complex answers requiring more time
for preparation and processing [5]. This led us to examine children’s
language cues following their VRLs, potentially illuminating their
cognitive effort. VRLs can be also indicative of children’s inner af-
fective state, in that long VRLs could be caused by high anxiety
levels. Especially for children with ASD, where a possible gap be-
tween their externally observable behavior and their inner affective
state has been reported [6], examining their physiology could pro-
vide us with a complementary view of their psychological state. For
this reason, we study the association of VRLs with the children’s
Electrodermal Activity (EDA), which serves as a sensitive measure
of their emotional, cognitive and other kinds of arousal [7, 8].

Since parents have an active role in our interactional scenario,
in our modeling we also take into account their linguistic and phys-
iological behavior with respect to the children’s VRLs. This choice
can be justified by the inherent child-parent synchrony reported in
literature, such as a consistent mother-child behavioral coordination
across time [9], or a physiological coordination affected by various
pathological conditions [10].

In this paper, we hypothesize that the children’s short and long
VRLs can be distinguished based on the their own and their parents’
language and EDA patterns. An understanding of the factors that
might have caused the long VRLs could provide us valuable infor-
mation on the child’s mental and affective state. We validate our ap-
proach through statistical tests, indicating that the two types of VRLs
can be discriminated with linguistic and physiological patterns from
both the child and the caregiver. We further conduct classification
experiments to discriminate between short and long VRLs and re-
gression tasks to predict VRL duration. The unweighted classifica-
tion accuracy ranges from 45.40% to 81.68% and the correlation of
the target and predicted latencies lies in the interval 0.05-0.95 de-
pending on the subject, reflecting the population heterogeneity. Our
results indicate that with moderate accuracy we can predict the type
and value of VRL duration based on physiological and linguistic fea-
tures from the child and the parent during these kinds of interactions.

2. RELATION TO PRIOR WORK
Many studies have underscored the importance of children’s VRLs
with respect to various factors, including pathological conditions.
Atance et al. [11] suggested that longer VRLs for incorrect responses
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indicate conflict and provide information about cognitive processes.
Weismer et al. [5] showed that, when they have to wait longer before
answering, children with language impairments produce more cor-
rect, complex and longer responses. Evans et al. [12] used stochastic
models to represent response latencies and verbal pauses of children
with language deficiencies. Finally, Heeman et al. [13] found that
children with ASD take, on average, significantly longer time to re-
spond to a question compared to typically developing children.

The connection between physiological data and VRLs has not
been extensively studied. Researchers have associated VRLs with
physiological cues for studying low and high anxiety subjects [14].
Our previous work has indicated that children’s EDA patterns differ
with respect to their VRLs, conveying information about their inner
affective state [15]. We have observed that high arousal levels are
present both during long and short VRLs, depending on the subject,
highlighting the complex affectivity in the population with ASD.

Behavioral similarity between interlocutors, like the one we are
finding between child and parent during ECA interactions, has been
observed in other studies as well. In [16] authors have explored
child-psychologist attuning with respect to their prosodic character-
istics during the Autism Diagnostic Observation Schedule (ADOS)
interviews. Similar findings were depicted in [17] for predicting tod-
dlers’ task engagement based on the child’s and the clinician’s acous-
tic cues. Finally, prosodic entrainment was found to be related with
positive and negative affect during married couples interactions [18].

3. DATABASE DESCRIPTION
The data for this study come from the “USC Rachel ECA Inter-
action Corpus” [4] containing recorded interactions between chil-
dren, an ECA and their parents. The experiments were designed to
elicit social and affective behaviors and natural conversational data
from children with ASD through games and narrative tasks. Rachel
presents a consistent stimuli across subjects, providing structured
prompting and facilitating within- and across-subjects analysis.

Our data represent 9 verbally fluent subjects with ASD (Table
1), aged between 6 and 12 years, each participating in 4 separate
sessions with duration of approximately 25 minutes. We have clin-
ical scores from 8 of these subjects, of which 4 were diagnosed
with Autism and 4 with Pervasive Developmental Disorders (PDD).
A child is diagnosed with PDD when he/she displays behaviors or
deficits of the Autism Spectrum but does not meet the criteria for a
specific disorder, such as Autism. In section 6 we will describe some
of our observations for these two groups.

Interactions are recorded with audio-visual and physiological
equipment. For the purpose of this paper we used human derived
transcripts and EDA signals captured from the child’s and parent’s
wrist and ankle using the Affectiva Q-Sensor [19]. The Q-Sensor
Curve was worn on the wrist and the Q-Sensor Pod on the ankle.

Table 1. Subjects’ age and clinical information.
Subject S1 S2 S3 S4 S5 S6 S7 S8 S9
Age (years) 12 7 10 7 7 6 8 7 8
Outcome Autism Autism Autism PDD Autism PDD – PDD PDD

PDD: Pervasive Developmental Disorder

4. RELATION OF VERBAL RESPONSE LATENCIES WITH
LANGUAGE AND PHYSIOLOGY

We describe and analyze through statistical tests the features used to
capture the linguistic and physiological cues of our subjects. Short
and long VRLs were differentiated based on the 70th percentile of
latency values for each child separately. This threshold was com-
puted empirically from the data, since VRL histograms were skewed

Table 2. Description of linguistic features.
Category Feature Description

General turn descriptor Number of words per sentence (WPS)
Number of words with more than 6 letters

Sentence structure Percentage of pronouns, (auxiliary) verbs, adverbs
conjunctions (conj.), negations, quantifiers

Psychological processes Percentage of words describing social, affect, cognitive
(cogn.) and perceptual (percept.) processes

Paralinguistic dimensions Percentage of assent, non-fluencies (non-fluen.) and fillers

Table 3. Bootstrap on difference of means between short (S) and
long (L) VRLs based on linguistic features from child’s and parent’s
turns († : p < 0.1, ∗ : p < 0.01). Each table cell notes which of the
two types of VRLs has greater mean on the corresponding feature.

Subj. Child Parent
WPS Verb Conj. Affect Non-Fluen. Verb Adverb Cogn. Percept.

S1 L* L† L* S* – L* L* L* L*
S2 L* – L* S† L* L* S* L* L*
S3 L* L† L† – S† L* S* L* L*
S4 – – – – L* L* L† L* L*
S5 L† L† – – – L* L* L* L*
S6 L* L† – S* – L* L* L* –
S7 L† – – S† – L† – – –
S8 L* – – – – L* L* L* L*
S9 – L† – – S† L* L* L* L*

towards the left [15]. All statistical tests were performed using boot-
strap on the means of the two VRL types.

4.1. Linguistic features
Linguistic features aim to describe individuals’ word usage and sen-
tence content. We used the Linguistic Inquiry and Word Count Tool-
box (LIWC) [20] designed to highlight the various emotional, cogni-
tive and structural components present in speech. We extracted lin-
guistic features for the child’s turns that followed Rachel’s questions,
and the parent’s turns that were uttered between Rachel and child
speech. The features, described in detail in Table 2, include general
turn descriptors, sentence structure information, word categories de-
picting psychological constructs and paralinguistic dimensions, and
result in a 16-dimensional vector. In case the parent did not speak
after Rachel, we set the corresponding feature sample equal to zero.
Also in order not to add bias to our data, we did not include the
count of words for the parent features, which has an inherent-time
dependence.

We report the results of the statistical tests for the features that
are more intuitively related to each person (Table 3). Children’s sen-
tence complexity, depicted in words per sentence, verb and conjunc-
tion use, is related with their VRLs, in that most of the children tend
to produce significantly more complex sentences after long VRLs.
This is in agreement with previous research findings [5]. Also some
of the children tend to wait for significantly less time before utter-
ing a sentence containing affect. Interestingly subjects S3 and S9
display significantly more fillers after short VRLs, suggesting that
the presence of a non-verbal vocalization allows them to have more
time before responding to a question. Speech delays were shown to
be associated with fillers in other studies as well [21].

From the statistical analysis of parent’s linguistic features (Ta-
ble 3), higher sentence complexity, indicated by use of verbs and
adverbs, can be associated with long VRLs. Also the presence of
cognitive and perceptual words, like “think” or “know”, is related
with long VRLs. This could indicate that during long VRLs, parent
tend to provide their insight, in an effort to motivate their children.

4.2. Physiological features
EDA is a slow varying signal, with sampling frequency of 8Hz and
amplitude measured in micro-Siemens (µS). To remove noise, we
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Table 4. Bootstrap on difference of means between short (S) and
long (L) VRLs based on mean EDA, peak height, and 1st order ab-
solute EDA difference. Each table cell notes which of the two types
of VRLs has greater mean on the corresponding feature.

Subject
Child Parent

Mean Mean Peak Mean 1st Mean Mean Peak Mean 1st

EDA Height EDA Diff EDA Height EDA Diff
S1 – – – – – –
S2 L* – – L* – –
S3 S† – – S* – –
S4 S† – – L* – L†
S5 S* – – S* S† S†
S6 L* – L† S* S* S*
S7 – – – L* S† –
S8 L* S* S* S* S† S†
S9 L* – – S* S† –

performed low-pass filtering with Hanning windows of two different
lengths of 40 and 200 points (5 and 25 seconds). Features were
computed over two different time window lengths of 4 and 8 seconds
with 1 second time step. This multiple time-scale analysis enables us
to keep both local variations and global trends. A similar approach
was followed in [22], where they have computed features based on
slow (0− 0.2Hz) and very slow (0− 0.08Hz) EDA response.

EDA features are extracted from all four sensor streams, i.e. the
child’s and parent’s wrist and ankle. They include the first 4 mo-
ments of the windowed signal, number of peaks, mean peak height
and width and their ratio, and the first 4 moments of absolute and
relative 1st and 2nd order time-difference, as described in [15]. This
results in a 212-dimensional feature vector; 53 features calculated
over 4 different combinations of filter-length and time-scale.

All EDA feature samples were extracted after Rachel had
stopped speaking and over a 7 seconds time interval. In case Rachel
started speaking again before the end of these 7 seconds, features
were extracted until the beginning of Rachel’s next turn. These long
effect intervals taken into account after the stimuli, can be justified
because of the slow varying nature of the EDA signal. In our experi-
ments we did not include subject 1’s EDA signals from child’s wrist
and ankle, since we observed that these were distorted from clipping.

We examine the effect of VRLs on mean EDA, mean peak height
and mean of 1st order absolute difference with statistical tests. We
report results on values from the child’s wrist and parent’s ankle,
since these two streams gave better performance (see Section 5.2).
Mean EDA from both the child and the parent are significantly dis-
tinct between short and long VRLs for most of the subjects (Table 4).
It is also noteworthy that mean peak height and absolute 1st order
difference from the parent’s EDA signal is different for more sub-
jects compared to the same measure from the child’s ankle, provid-
ing an indication that parents’ cues can convey valuable information.

5. EXPERIMENTS
5.1. Methods
We performed classification and regression tasks to predict short and
long VRLs and the VRL durations, respectively. All results are re-
ported based on a leave-one-instance-out cross-validation scheme,
where “instance” denotes a VRL instance, and feature selection was
done on the respective train set and then applied on the test data.

5.1.1. Classification
Classification was performed with a K-NN classifier with K = 15
nearest neighbors, a value which was empirically found to give bet-
ter performance. For feature selection, we kept those features with
Fisher Discriminant Ratio (FDR) [23] greater than the 85th per-

centile FDR of the total feature set. This was performed in an effort
to maximize the between-class and minimize the within-class dis-
tances. Furthermore, if a pair of features had correlation higher than
r = 0.7, we omitted the feature with the lowest FDR. This resulted,
on average, in 30- and 3-dimensional features for the physiological
and the linguistic cues, respectively. For the final decision, we con-
catenated the class probabilities of short VRLs from each modality
into a feature vector and fed them as an input into a K-NN classifier.

5.1.2. Regression
Motivated by the fact that VRLs are essentially waiting times with
respect to a stimuli, we were able to model them with a Gamma dis-
tribution and predict their value using Generalized Linear Regression
(GLR). Negative VRL duration instances, constituting 2.52% of our
original data, were omitted in this task, since a random variable fol-
lowing the Gamma distribution can only take positive values.

Generalized linear models are an extension of linear models and
contain a random and a systematic component [24, 25]. The ran-
dom component has a vector of n observations y which is assumed
to be a realization of a random variable Y = [y1, . . . ,yn] with
mean µ, such that E(Y) = µ. The systematic component of the
model contains p covariates X = [x1, . . . ,xp] that produce a linear
predictor η = X · β =

∑p
j=1 xj · βj. The link between the random

and systematic components is done by the link function g, such that
ηi = g(µi), which for the Gamma distribution is g(µi) = 1/µi.

We tested the goodness of fit of VRL values to a Gamma and an
exponential distribution, since the later is a special case of Gamma
with unity shape parameter, using the Kolmogorov-Smirnov test. For
subjects 4-9 we got a significant fit for both distributions (p < 0.05),
while for subjects 1-3 only for the exponential one (p ≤ 0.01), as
shown in Table 5. We performed feature selection by keeping only
those features for which fitting the GLR model resulted in significant
weights (p ≤ 0.07, value which was empirically found to yield bet-
ter results). To come up with the final prediction, we concatenated
the prediction values from each sensory stream into a feature vector
and used these as covariates to a GLR model.

Table 5. P-values for goodness of fit of VRL values to Gamma and
Exponential probability distributions according to the Kolmogorov-
Smirnov test.

Distribution S1 S2 S3 S4 S5 S6 S7 S8 S9
Gamma 0.10 0.31 0.53 0.04 <0.01 <0.01 0.01 0.02 0.06

Exponential <0.01 <0.01 0.01 0.03 <0.01 0.02 0.01 0.07 0.03

5.2. Results
Our experimental results are reported for each modality separately,
the combination of all four EDA streams, both linguistic streams and
finally all modalities (Tables 6, 7). EDA signals from children’s wrist
seem to be more indicative for our task compared to signals from
their ankle, while the opposite held for the parent. This might be due
to the different sensitivity of the corresponding body parts for the
two groups or because of the different kinds of sensors (Curve and
Pod) worn on the wrist and ankle respectively. In many cases, like
subjects 3,5 and 9 for the EDA stream, combining child and parent
signals increases the classification accuracy compared to each stream
separately, suggesting the presence of informative cues elicited from
both people participating in the ECA interaction. Also combining all
physiological and linguistic streams can improve our results, indicat-
ing the existence of complementary information in these channels.
The results from the final fusion of all modalities for most of the
subjects appear to have similar trends for both the classification and
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Table 6. Unweighted classification accuracies (%) for classifying
short and long VRLs based on child’s and parent’s physiological
and linguistic cues and their combinations.

Subject
Physiological Linguistic

AllChild Parent All Child Parent Allwrist ankle wrist ankle
S1 – – 51.01 54.65 67.48 59.76 50.00 62.22 67.48
S2 55.68 45.40 48.04 54.05 53.54 55.99 45.23 58.10 45.40
S3 58.13 51.05 51.40 60.66 61.08 64.95 50.00 72.53 71.03
S4 52.96 49.37 50.84 54.03 55.95 52.00 59.43 62.76 50.59
S5 58.35 50.94 47.74 54.86 61.49 49.61 65.83 63.39 71.95
S6 54.47 49.94 51.62 57.35 57.75 58.35 50.00 63.01 59.81
S7 48.68 57.08 53.63 45.38 55.97 54.35 51.72 50.00 57.11
S8 63.82 49.69 45.73 61.63 61.51 65.44 69.64 67.40 81.68
S9 53.72 50.59 53.42 52.77 55.10 49.69 69.36 65.37 68.37

Table 7. Correlations of target VRL and predicted values from re-
gression based on child’s and parent’s physiological and linguistic
cues and their combinations († : p < 0.1, ∗ : p < 0.01).

Subject
Physiological Linguistic

AllChild Parent All Child Parent Allwrist ankle wrist ankle
S1 – – 0.03 0.06† -0.09 0.30* 0.14† 0.27* 0.32*
S2 0.14* 0.14* -0.06† -0.06† -0.09 -0.15† 0.10 0.07 0.05
S3 0.15* 0.00 -0.05† -0.11* 0.17 -0.00 0.69* 0.50* 0.95*
S4 -0.06† 0.00 0.07* 0.03 -0.22* -0.18* 0.39* 0.33* 0.22*
S5 0.10* 0.04† -0.01 0.10* 0.15† 0.13† -0.01 0.06 0.17†
S6 0.11* 0.04 0.06† 0.21* 0.16† 0.20* 0.12† 0.17* 0.24*
S7 0.00 0.01 -0.01 0.06† -0.16† 0.15† 0.18† 0.13† 0.13†
S8 0.14* -0.05† -0.08† 0.06† -0.06 0.15† 0.44* 0.37* 0.46*
S9 0.16* 0.04 0.13* 0.04 0.18† 0.14† 0.15† 0.07 0.18†

regression task and to give improvement over the separate streams,
suggesting that linguistic and physiological features can give us con-
sistent information about the corresponding VRLs. The occurring
negative correlations in the regression task might be caused by lack
of informative cues from the corresponding signals.

6. DISCUSSION
We observe some interesting effects through error analysis. There
were many cases in which we noticed a lag between the actual VRL
instance and the correct decision from the EDA stream. For exam-
ple, the posterior probability from the EDA for some long VRL in-
stances was a bit less than 0.5, classifying the corresponding VRL
as short, but in the next instance it increased above 0.5, signifying
a long VRL. This could suggest that the physiological response can
happen after a variable time interval and the internal state might be
more slowly varying than the verbal state. Finding efficient ways to
model this could give us more insights into a person’s affectivity.

Errors occurred in ambiguous instances where the presence of a
long VRL couldn’t have been justified by a high cognitive or social
demand. Such examples were simple tasks in which children had to
count the number of objects in a picture and children usually showed
long VRLs. However the cognitive load was obviously small in these
tasks, therefore the EDA signal could not capture indices of long
VRLs, and the child’s verbal response was just a number, making it
very difficult for the linguistic stream also to predict this long VRL.
Long VRLs after Rachel’s statements or affirmative turns sometimes
also failed to be correctly classified. For instance a long VRL after
Rachel’s turn “I get really excited with a new puppy” could not have
been explained by any signs from the child.

Examining the posterior probabilities from each modality with
respect to the various tasks, resulted in interesting observations about
the interplay between the physiological and linguistic information
streams. During the emotional matching games, in which a specific
emotion from a set of images has to be identified, children usually ut-
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Fig. 1. (a) Gamma/Exponential VRL distributions with parameters
computed using Maximum Likelihood Estimation (MLE) for sub-
jects with PDD and Autism. (b) Distribution of mean EDA during
VRL instances for subjects with PDD and Autism.

tered a letter corresponding to the image they had selected. The lin-
guistic stream accounted for a short VRL, since there was no sign of
language complexity or hesitation. The only way we could capture
a long VRL in these cases was through the physiological modality,
in which high cognitive load was manifested. During story-telling
tasks, the child usually depicted long VRLs, for which linguistic
cues in many cases gave the correct answer, since the child’s sen-
tence involved more complex linguistic features. Motivated by these,
task-specific analysis could be worth exploring in the future.

In an effort to obtain further insight about the VRLs of children
with ASD, we looked for possible differences between the groups
with Autism and PDD with respect to their VRLs. We fitted the
VRL values of each child to a Gamma (or an exponential for subjects
1,2,3) distribution using Maximum Likelihood Estimation (MLE).
We observe that most of the children with PDD tend to have higher
VRL values, and that there is a visual differentiation between sub-
jects with Autism and PDD with respect to the resulting distributions
(Figure 1a). We also notice differences on the mean EDA distribu-
tions of each subject from the child’s wrist during VRL instances
(Figure 1b). One subject with Autism has very high and another one
very low EDA levels during VRLs, while two subjects with PDD
seem to have EDA values in the middle. Similar findings exist con-
cerning the presence of two groups with different EDA levels (high
and low) within the autism spectrum, without this being related to an
ASD outcome [26]. Although some of these observations might be
due to person dependencies because of the small number of our sub-
jects, they could indicate the presence of quantitative differences ex-
pressed during VRLs, which can possibly enhance our understand-
ing about the clinical behavior of these two populations.

7. CONCLUSIONS AND FUTURE WORK
This study provides a novel analysis of VRLs of children with ASD
while interacting with an ECA and their parents based on physio-
logical and linguistic cues of the child and the parent. Our results
demonstrate that the child’s physiological and linguistic behavior
can indicate the nature of VRL. Parent’s cues contain complemen-
tary information for our task, suggesting that the parent is an active
member in these types of triadic ECA-child-parent interactions.

In our future work, we plan to examine the specific types of
ECA stimuli, for example open and closed questions, that result in
long VRLs by performing speech act tagging of Rachel’s turns. We
will further investigate different types of linguistic measures, like
sentence structural coherence, since long VRLs might be followed
by children’s unstructured sentences, as observed in our data. Fi-
nally, we plan to study possible time-dependencies across VRLs by
using dynamic models, that can more appropriately capture the time
evolution of these interactive conversations.
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